Programa
XXI Simposio Mexicano de Computación y Robótica en Medicina
4 de septiembre de 2025
- Programa -
| Evento | Horario |
|---|---|
| Inauguración | 09:00 - 09:15 |
| Conferencia Magistral Prof. Leo Joskowicz | 09:15 - 10:15 |
Exposición de trabajos
|
10:15 - 11:15 |
Exposición de trabajos
|
11:30 - 12:30 |
Exposición de trabajos
|
12:45 - 13:45 |
| Lunch y Pósters | 13:45 - 14:45 |
| Conferencia Magistral Dra. Natasha Leporè | 14:45 - 15:45 |
Exposición de trabajos
|
15:45 - 16:45 |
Exposición de trabajos
|
17:00 - 18:00 |
| Clausura | 18:00 |
(IMPORTANTE) Todos los autores deben registrarse antes del 2 de septiembre para confirmar su participación, tanto exposiciones orales como pósters
- Pósters -
- (ID 19) Segmentación de imágenes dentales mediante modelos de aprendizaje profundo. Lizbeth Jacuinde López
- (ID 21) Segmentación de radiografías pulmonares mediante una red neuronal profunda con arquitectura U-Net para el análisis de dimensiones fractales en pacientes con COVID-19. Bryan Hernández Álvarez, Esaú Eliezer Escobar Juárez
- (ID 23) Segmentación Automática de Lesiones de Melanoma en Imágenes Dermatoscópicas. J. Ramón Ortiz Castañeda, M. Elena Martinez-Perez
- (ID 30) Generación de mosaicos de imágenes cSLO de fondo de ojo. Hugo Rafael Ibarra Alarcón; M. Elena Martinez-Perez
- (ID 33) Modelo de Inteligencia Artificial Multimodal para Diagnóstico de Infarto Agudo al Miocardio. Dra. Gabriela Borrayo Sánchez, Dra. Dania N. Lima Sánchez, C. Urick Adrián García Ayala, Ing. Jorge Alejandro Camacho Morales, Dr. Alejandro Alayola Sansores, Dra. Ana Carolina Sepúlveda Vildósola
- (ID 29) Optimal Dataset Size for Fine-Tuning sEMG-Based Hand Gesture Recognition in Rehabilitation Prosthesis. Andrés Escobedo-Gordillo, Jorge Brieva, and Ernesto Moya-Albor
- (ID 40) ArtNeuro-Communication Interface: Interfaz de Voz Silenciosa Usando Redes Neuronales Artificiales y Modelos de Lenguaje para la Inclusión. Cabrera Almazán, Luis Rael; Soto Monterrubio, Diego Arturo; Rodríguez Ahumada, José Antonio; Salas Leal, Abel; Hernández Vázquez, Edgar Alejandro; Villela Venegas, Miguel
- (ID 43) REGISTRO DE IMÁGENES TÉRMICAS EN UN SISTEMA ESTÉREO DE ESTRUCTURAS 3D. Manjarrez Gracia Kenny Angelberth, Crescencio García Segundo, Moock Margitta Verena
- (ID 46) Relación entre la integridad de la sustancia blanca y la ventilación mecánica neonatal. Eliseo Portilla Islas, Sofía Lindacher Rivadeneyra, Claudia Calipso Gutiérrez Hernández, Graciela Catalina Alatorre Cruz, Ana Camille Gleason Domínguez, José Oliver de Leo Jiménez, Thalía Harmony
- (ID 38) Segmentación de vasos sanguíneos a partir de imágenes de fondo de ojo basado en el refinamiento del mapa de probabilidades obtenido por una UNet. Cecilia Marlene Villanueva Tlatempa, Zian Fanti Gutiérrez
- (ID 44) Segmentación de vasos sanguíneos, a partir de mosaicos de imagen de fondo de ojo basado en redes neuronales convolucionales. Jesús Alejandro Coria Buendía, Zian Fanti Gutiérrez
- (ID 49) Ensamble evolutivo para clasificación multietiqueta de anatomía en TC de tórax. Rodrigo Ramos Díaz, Jimena Olveres1, Boris Escalante-Ramírez
- (ID 53) Toolkit para perfilado de datos en Datasets de imágenes médicas. Alan Camargo, Victor Hernández-Díaz, Jimena Olveres Montiel, Boris Escalante
- (ID 54) Segmentación y reconstrucción 3D de riñones, quistes y tumores renales a partir de imágenes de TC mediante la implementación de modelos de aprendizaje profundo con transformadores. Veloz Lucas M.A., Olguin Torres L.A., Dominguez-Vega Z.T., Padilla Castañeda M.A
- (ID 1) DESARROLLO DE UNA INTERFAZ INTERACTIVA DE UN NEURONAVEGADOR PARA LA ENSEÑANZA DE PROCEDIMIENTOS DE VENTRICULOSTOMÍA. Daniela Montserrat Flores Macedonio
- (ID 2) Evaluación de Grad-CAM en la detección de neumonía: interpretación médica de mapas de activación. Alfredo Gutiérrez Alfaro;Ángela Patricia López Alvarado;Karla Daniela Gerardo
- (ID 3) Immersive and interactive neuroanatomy: Development and assessment of VR and web-based learning tools. Diego Cureño; Alejandro De León Cuevas; Paola Ocampo Luna; Merlin J Fair; María Luisa García-Gomar; María Guadalupe García-Gomar
- (ID 4) Integración de un módulo de interfaz de usuario en un sistema de navegación para la aplicación de tornillos transpediculares en columna vertebral. Luz Citlalli Jiménez Terrazas
- (ID 5) PCAM Reinterpretado: Transformer-Explainability para la Identificación de Células Tumorales en Ganglios Linfáticos. Saul Alejandro Villarados Flores
- (ID 6) Sistema de remodelación 3D para el análisis de la superficie corporal con obesidad. Gabriela Cordero Fernández; Ernesto Santiesteban Torres; Alfonso Gastélum Strozzi; Celia Sánchez Pérez
- Conferencias magistrales -

Prof. Leo Joskowicz
Director, CASMIP Laboratory
School of Computer Science and Engineering, The Hebrew University
Few-shot and semi-supervised deep learning for volumetric medical image segmentation
Deep learning models have become the method of choice for the automatic detection and segmentation of structures in medical images. Supervised learning methods require training datasets with radiologist's annotations. Supervised learning methods yield excellent results but rely on large annotated datasets to train them, which is expensive and time-consuming, as it requires expert annotators. A variety of methods, including few-shot learning, semi-supervised learning and active learning have been proposed. However, none of them yields satisfactory results, especially for small structures such as lesions and tumors.
In this talk, we present an annotation workflow whose aim is to accelerate the creation of expert-validated annotations while optimizing the annotation and correction time. Specifically, we present two new label-efficient methods. The first is a few-shot learning optimized for small lesions in CT and MRI scans. The second is a semi-supervised method combines the precision of expert annotations with the quantity advantages of pseudo-labeled data. It uses an ensemble of 3D nnU-Net models trained on a few expert-annotated scans to generate pseudo-labels on a large dataset of unannotated scans. We demonstrate both methods on clinically relevant tasks.
Leo Joskowicz is the founder and director of the Computer-Aided Surgery and Medical Image Processing Laboratory (CASMIP Lab). He is a Fellow of the IEEE, ASME, and MICCAI (Medical Image Computing and Computer Assisted Intervention) Societies. Prof. Joskowicz served as President of the MICCAI Society and as Secretary General of both the International Society of Computer Aided Orthopaedic Surgery (CAOS International) and the International Society for Computer Assisted Surgery (ISCAS). He was honored with the 2010 Maurice E. Muller Award for Excellence in Computer Assisted Surgery by CAOS International and the 2007 Kaye Innovation Award. He has published over 320 technical works including books, journal papers, book chapters, and editorials, and has 14 issued patents. Prof. Joskowicz contributes to the Editorial Boards of Medical Image Analysis, Int. J. of Computer Aided Surgery, and Computer Aided Surgery, and has been involved in numerous program committees. He co-founded HighRAD, a company specializing in oncology AI imaging

PhD. Natasha Leporé
Associate Professor of Research Radiology, Keck School of Medicine of USC
Pediatric Brain Ultra Low-Field MRI Analysis Tools for Research and the Clinic
During the initial stages of life, the human brain undergoes rapid tissue growth and development after birth. Accurately capturing and describing structural changes from magnetic resonance images (MRI) during this vital period is crucial for gaining new perspectives on healthy brain development and enabling the early identification of neurodevelopmental disorders. While validated brain post-processing and analysis tools exist for adult brains, efforts to directly translate existing adult brain algorithms to pediatric MRI have generally failed, partly due to the poor gray/white matter differentiation of the developing brain and its rapid growth throughout the first years of life. These challenges impair the ability of existing algorithms to accurately segment pediatric brain structures even with high field (1.5T or 3T) MRI systems. In low and middle-income countries, high field MRI systems are rare, due to the cost and maintenance required. More accessible MRI systems like the 0.064T Hyperfine scanner are cheaper and portable, and could help to assess gross anatomical abnormalities; however, image processing challenges are further compounded in these lower resolution imaging environments. We have been developing a set of deep learning based tools for image quality improvement, quality control, and segmentation for ultra low-field MRI. Additionally, we have been determining the useability of ultra-low field MRI in pediatric emergency medicine.
I am a Professor of Research in Radiology and Biomedical Engineering at the University of Southern California and at Children's Hospital Los Angeles. My laboratory, the Computational Imaging of Brain Organization Research Group (CIBORG) specializes in mathematical and numerical methods to study brain anatomy and function through magnetic resonance imaging. These methods are applied to furthering our understanding of different neurological disorders, as well as normal and abnormal brain development, in both high- and low-resource regions. CIBORG’s research places an emphasis on creating computational imaging tools that address global health needs and foster a future where health innovations are more equitable and accessible to communities worldwide. Though the main focus is on early childhood, the lab’s research spans all ages from the fetal stages to elderly adults and every age in between. In addition, both though CIBORG and the startup company I co-founded, Voxel Healthcare, we have also been developing software to automate clinicians’ tasks and provide quantitative assessment of medical images to help in their daily clinical tasks.
I graduated with a BSc in Physics and Mathematics from the University of Montreal and then obtained a Masters in Applied Mathematics from Cambridge University, in general relativity. My PhD is in Theoretical Physics (Harvard University) and deals with quantum chaos in quantum billiards living on flat surfaces and the pseudosphere. I switched to neuroimaging during my postdoctoral fellowship at the Laboratory of Neuro Imaging at UCLA.
Fechas importantes
Fecha límite de envío de trabajos: 22 de agosto de 2025, Notificación de aceptación: 29 de agosto de 2025